Effect of polymer molecular weight on the bone biological activity of biodegradable polymer/calcium phosphate cement composites.
نویسندگان
چکیده
Previous studies demonstrated that the addition of biodegradable polymer microparticles to calcium phosphate (CaP) cement improves the cement's degradative behavior without affecting its handling characteristics, especially its injectability and moldability. We investigated the influence of molecular weight of polymeric microparticles included in CaP cement on implant degradation and bone formation in critical-sized defects. Forty rats received cranial defects filled with formulations of CaP cement and poly(DL-lactic-co-glycolic acid) (PLGA) microparticles. Microparticles consisted of 100% high- (HMW) or low-molecular-weight (LMW) PLGA or mixtures of these (25%, 50%, or 75%). Implantation time was 12 weeks. Porosity measurements showed that the 100% HMW group was significantly less porous than the other groups. Histology and histomorphometry revealed significantly greater implant degradation in the 100% LMW group. Defect bridging was mainly seen in the 75% and 100% LMW groups, with the highest amount of bone in the 100% LMW formulation. These results suggest that LMW PLGA microparticles are associated with better bone formation than HMW PLGA, which is most likely explained by the greater degradation of LMW PLGA microparticles. In conclusion, CaP cement composites with high percentages of LMW PLGA microparticles show good bone transductive behavior, with complete defect bridging. The 100% LMW group turned out to be the best formulation.
منابع مشابه
Investigation of Macroporous Calcium Phosphate Cement Obtained by Foamed Gelatin Polymer
This study deals with the effect of gelatin on physical and mechanical properties of calcium phosphate bone cements. The mixture of tetracalcium phosphate (TTCP) and dicalcium phosphate (DCPA) as the cement powder was mixed with 6 wt% Na2HPO4 solution containing different amount (0, 2, 5 and 8% in w/w) of foamed gelatin as liquid phase. The physical properties were determined in the terms of s...
متن کاملPolymer-calcium phosphate composites for use as an injectable bone substitute
Calcium phosphate (CP) materials have been used extensively for bone replacement and augmentation due to their similarity to the mineral component of bone. In addition to being non-toxic, they are biocompatible, not recognized as foreign in the body, and most importantly, exhibit bioactive behavior, being integrated into the tissue by the same processes active in remodeling healthy bone. This l...
متن کاملEffect of Graphene Oxide Nanoparticles Addition on Mechanical and Biological Properties of Calcium Phosphate Cement
In the present study, we have evaluated the effects of graphene oxide (GO) addition on the physical-mechanical-biological properties of calcium phosphate cement (CPC). The in vitro cellular responses of MG63 and in vivo tissue responses after the implantation of CPC/GO in parietal bone defects of wistar rats were also investigated. The brushite calcium phosphate cements were prepared by mixi...
متن کاملMechanical Properties of Poly(propylene fumarate) Reinforced Brushite Cement: Effects of Cement Composition and Powder to Liquid Ratio
Statement of Purpose: Calcium phosphate cements are prepared by mixing calcium phosphate powder with a liquid component to form a paste that hardens over time via a dissolution-precipitation reaction. Thus, in addition to being osteoconductive and resorbable, these biomaterials have the advantageous property of being injectable. This property can be leveraged for castingbased approaches to scaf...
متن کاملPorous poly ( α - hydroxyacid ) / bioglass ® composite scaffolds for bone tissue engineering . I : preparation and in vitro characterization
Highly porous composites scaffolds of poly-D,L-lactide (PDLLA) and poly(lactide-co-glycolide) (PLGA) containing different amounts (10, 25 and 50wt%) of bioactive glass (45S5 bioglass) were prepared by thermally induced solid-liquid phase separation (TIPS) and subsequent solvent sublimation. The addition of increasing amounts of bioglass into the polymer foams decreased the pore volume. Converse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tissue engineering. Part A
دوره 15 10 شماره
صفحات -
تاریخ انتشار 2009